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S1J~ IARY

This paper treats the convergence of adaptive LMS filters and , in

particular, the adaptive line enhancer (ALE) . The learning curves of

such a filter are a sum of exponentially decaying modes with time con-

stan ts given by the eigenvalues of the input correlation matrix and the

relative initial magnitudes given by the projections of the filter on the

eigenvectors . It is shown that , for large filter lengths, a simple

correspondence may be set up between the discrete and continuous cases .

Indexed by frequency, the eigenvalues of the correlation matrix correspond 1’

to the magnitude of the power spectrum , and the proj ections onto the

eigenvectors to the filter transfer function. A detailed ana lysis is

carried out for single pole spectra and evaluated through a computer simu-

lation . In genera l, the techniques developed provide a physical context ,

i . e . ,  the signal spectrum , in which to evaluate convergence . Thus , it is

poesible , with varying degrees of accuracy depend ing on knowledge of the

input spectrum , to predict the convergence behavior of the system in

general. 
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I. INTRODUCTION

This study investigates the convergence properties of LMS adaptive

filters for a wide class of inpu t spectra , thus extending some results of

[1] and [2]. Utilization of the asymptotic properties of Toeplitz matrices

permits the development of a fairly general theory . More specific conclu-

sions are reached for the case of the adaptive line enhancer (ALE) , which

is used both as an introductory example and a concrete application. In

particular , a detailed analysis is carried out for single pole spectra

(i.e., a narrowband signal in white noise) . Several simplified derivations

of previous results ([2] and [3]) are included in order that the discussion

may rema in self—contained .

We begin with a briaf description of some basic equations (Section II).

This is followed by a treatment of sinusoids in white noise (Section III) ,

which is intended to provide some intuition for the theory of Section IV.

In Section IV , it is shown that for large filter lengths , the learning curves

of the discrete LMS filter may be approximated by the continuous case . In

particular , a great deal may be said about the convergence process without

extensive calculations, simply from some knowledge of the input spectrum.

In Section V , the theory is applied to single—pole spectra and evaluated

through a computer sinElation .

~~~~~~~ - ~~‘ ...A ~~~.‘-si!~
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II. BACKGROU ND

The convergence time for a linear time invariant system depend s, in

general , on the eigenvalues of the system and its initial state . When

adjustable parameters are involved , a coarse indicator of the optimal con-

vergence rate to be obtained is the conditioning number ; that is , the ratio

of the largest to the smallest eigenvalue. However , inasmuch as suitably

chosen initial conditions can arbitrarily prolong convergence , any further

statement requires some limitation on the initial state, usually taken to

be zero. This is not so restrictive as may at first appear.

More precisely, consider the implementation of the 11(5 adaptive filter

pictured in Figure 1. For a stationary input vector X(k), the recursion

equations for the mean of the linear prediction filter, W(k) , are given

approximately (W(k) and X(k) are assumed independent for large k — cf

[1], [4]) by [1]

~ (k+1) — Af~(k) + 2 LIP (1)

where t~(k) EW(k) is the expected value of the L dimensional weight vector

W(k) at time k, and

A — I — 2pR

— I — 2ME[X
T
X]

P — E ( d X ) , (2)

6

~
-T--- 

~~~~~~~~~~~~~~~
— — ~~~~~ .—. — — ~~~~~~~~~~~~~~~~~ —



04 W ( k+ 1) .W ( k )+2~e ( k)_ x ~~~ j4_

e E R R O R

~T 
+ d 

~~ :::~:
INPUT FILTER

X( k) W(k)

t ( ~~)

DECORRELATI ON
DELAY

X L(k) 

i -

E~II I~~~x L_ 1•4

• 
X L 2.-C

‘1 ADAPTIVE
FILTER j

i;::i—~ ~
;_6

(bi

Figure 1. Block diagrams of (a) the LMS Adaptive Filter and (b) the Adaptive
Line Enhancer (ALE).

7

_ _ _ __ _ _ _ _ _ _  _ _ _ _

_ _ _ _ _ _ _ _ _  —



I
with ~- a feedback parameter , R the autocorrelation matrix of the input

process, and P the cross—correlation of the input with the scalar d.

It is easily seen by direct substitution that

k—i
t~(k) — AkW( O) + 2ii ( Z A~ )P (3)

j— O

is a solution to (1). It follows that a necessary and sufficient condition

for (1) to converge for all initial states t~(O) is that the eigenvalues of A

have magnitude less than one ; i.e.,

1 (4)
max

where A — maximum eigenvalue of R.

In that case ,

u r n  t~(k) 2p ( ~ A~)P
j0

- 2~ (I -

—1— R  P , ( 5)

the well—known solution to the discrete Wiener—Hopf equation .

The terms of equation (3) represent a decomposition of the evolution

of ~ (k) into the decay of the old state

AkV(O) (6)

8
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and the growth of the new state

k-i
2i.’( E A~ )P. ( 7)

j=O

If the new state is substantially different from the old state (i.e., if

its presence is easily distinguished), its detection will depend essentially

on expression (7) .  This , and considerations of tractabil i ty,  lead us to

treat only the “growth rate”; i.e., we set t~(O)—O. Equations (3) and (5)

yield

— t~(k) — 2~i( E ASP)
f— k

= A kW* (8)

or

I IW~’ — ~ (k) 2 
— w*

T(Ai )TAiW* (9)

The symbol T stands for conjugate transpose and (f indicates the vector

norm. Let A~ , v — 1, . . ., L be the eigenvalues and EV the corresponding

eigenvectors of R. Then (9) may be written

I IW* - 

~ (k)II
2 

- 

~ 
( i_ 2~ A~ ) 2k 1E

V 
• . (10)

Note that the “ “  represents the scalar product between two vectors .

Equation (10) describes the convergence of ~ (k) to W~ .

9
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A similar expression may be derived for the convergence of the mean

• square error ~(k) — E (c
2 (k ) )  (see Figure la) to its limiting value E~*. It

is easily shown [ii that , in the absence of gradient noise (i.e.,  Lii small) ,

~(k) — — (W* — ~ (k )) TR (W* — t4(k) )

- 

~~~~ 

(1_2~A~)2kAv IEV .W* I2 
. (11)

The curves (10) and (11) as a function of k will be termed the learning

curves of the filter and output respectively. Each of the L terms relaxes
2

geometrically with a constant logarithmic slope of log(l_211A
~
) . Thus , each

term fa lls to e 1 of its original value in a time given by

2V (log ( i_2 1IA~ )

4I1X
~ 

for 211A
~ 

<< 1 (12)

• Inequality (4) imposes a lower bound on the largest time constant P

T —max 4 pA

mm

— —i-— (conditioning nu~~er) . (13)

10
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Generally , T is a very conservative estimate for the behavior ofmax

the learning curves. In practice , only those eigenvalues for which the

projection of the f inal state on the corresponding eigenvector (E’~W* for

the filter or A
~
E’).W* for the output) is large will exert a significant

• influence on convergence. This aspect will be examined in detail in

succeeding sections .

11
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III. • SINUSOIDS IN WHITE NOISE (ALE)

In this section we examine the previous theory for the case of M complex

sinusoids in white noise . It is shown that the L—dimensional vector space of

the input may be decomposed into an M—dimensional subspace spanned by the

signal component and its orthogonal complement. This permits a simpli-

fied calculation of the elgenvalues of the correlation matrix (equation 26).

Then , by restricting ourselves to the ALE , we find that W* lies in the signal

subspace . It follows that all eigenvectors outside that space are orthogonal

to W* and , hence , their eigenvaluea do not enter into the learning curves

of equations (10) and (11) .

One Sinusoid

Consider the case of a single sine wave in white noise x( L )—

1~~~~cos (~ii2~+O) + a
0
N(&), where 0 is a uniformly distributed random variable ,

and N(R.) is zero—mean white noise with unit variance. Define the L—dimensional

vector a by

— o e m
~~ L — 1, . . .. L . (14)

12
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Then the autocorrelation matrix of x is given by

R = R + a 21
S 0

— ~ + 
.
~
.) + (15)

where

• — 2 it~(L—k)a~a — a e  . (16)

Let us examine the effect of R on the two—dimensional subapace spanned by

a and~~ :
L

(4a) L — E ~~~~~~ — LO~ a
k. 1

I
La~i

(4~
) , — Ea9,i~i.~ — (

~~~
)a
&

• 

4a — (Za~ )i (17)

Thus, the subapace is invariant (is mapped into itself) under R5, and a matrix

representation of R
5 in that subspace is

La2 Ea2
• s k

R I  _ . . L . (18)
8 (a ,A) 2 

Ea~ ~~~

*

13
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Note that the eigenvalues of the matrix (18) will also be eigenvalues

of R5. The characteristic equation is quadratic with roots

where Izi — 1Za
2

1 — 
sinwL (19)

in sinw

Since the columns of R are linear combinations of a and ~~~, its rank is at
S

most two, and the other L—2 eigenvalues must be zero. Hence L—2 eigenvalues

of R are a~ and the remaining two are (A÷) + a~. Furthermore, it will be

shown in the next subsection that, for the ALE of Figure lb W* lies in the

subapace spanned by a and a; and , thus, that the “growth” curves only depend . )

on the eigenvalues A~ + a~. We also note that , for w bounded away from 0

and ii , A
+ 

-. (1~ L/2 , consequently, the learning curves exhibit a single time

constant,

2 L  2 (20)
4)1(0 —y- + a )

This is to be contrasted with the estimate of equation (13)

1
~IIlax 

— 4pA~~

1 1
-

~~~~~~

-

L

~ 
+ 1)  (21)

2

14
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which , although much larger than t except at very small signal—to—noise

ratios, will not be observed when the initial 
state~~(0) is zero 

(the

mode corresponding to ~~~~~~ is orthogonal to

M Sinusoids

it is easy to generalize the foregoing technique to the case of M

sinusoids. Define H vectors a
a
, each of dimension L by

9.
o e s — L , . . .,  M

9. — 1, . . ., L (22 )

where may be negative in order to include negative frequency 
components.

Define the LxL matrix
4,

in

~

s—i

- ~~~ . 
(23)

We now look for an eigenvector of the form E ~y5
a
5 
with eigenvalue A

(~E) 9. E

— A E 9.

(24)

15



Then , since the vectors a5 are linearly independent , equation (24) implies

E B y  — AY r~ 
(26)

Note tha t the M—dirnensional subspace spanned by the vectors a6 is invariant

under 41, that 41 is represented by the matrix B with respect to that basis,

and that B has rank 14. Since 41 also has rank 14, its remaining L—M eigen—

values are zero .

Also , for the ALE of Figure ib ,

d( L) - E oe
1
~~s9.~ 

O~ ) 
+ a N(&)

x(9. ) — d(9 . )  + a N (L)

and
lw8(L+6—1)

P(Z) — Eoe , (27)

a linear combination of the a5 (see (3] for details). Thus, W* — R ’P —

(I + B) 1P is also contained in the subspace of the a~. Furthermore , since P

41 is Hermition, those eigenvectors of 41 not belonging to the matrix B are

orthogonal to the above subspace and hence to W*. We conclude that at most,

M elgenvalues are pertinent to the learning curves, and they are solutions

to equation (26).

16
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t
Example 1

Let a1 
— —

~~ a~~~ ; a2 
— ~~ ~~~~~ Then ~ — ~

2 cos w (2. — k) and
9. 

,,~~
- 2. ~~~~~ ik s

B is the matr ix  given in (18) .

Example 2

1 01 iwi 2 02 iwi 3 _ 1 4 _2a — — - e ; a  — — e  ; a  — a ; a  a
& 

~~~~ 

2. 
,,~~

- 9. &~ £ £

Then -

41 — o
1cosw1(2.—k) +

Let t~ — w 1—ui
2 
and ~s — w1-+os2 . Then B is given b7

— 

/ ~~ o a E e i~~ 
i 

a~Ze
2
~~1k 0102Eet~~ \

a o ~~e~~
Ak L0~ a102

Ee~~~ a~Ee 2

2 
(28)

o~Ee 1 o
1
a2Ee

_i
~~ La~ O1O2Ee

\ai
a
2~
e i

~~ a~Ee 2 o a E e ~~~ J
L sin L~~.!_

We note that E e~~
’
~~I — I 2 which is much less than L for large

k—i sin —i—
L and —f— < x < 2ii — 2/L. Thus, provided

17
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(29)

the off—diagonal matrices (as indicated by the dotted lines) of the entire

matrix (28) may be neglected (i.e., the positive and negative frequency

components uncouple). The remaining 2x2 matrices are identical and have

eigenva lues

- 

a~ + a~ 
± ± lL2(0~ - o~)2 + 4 I Z I 2a~a~

2 
si n L— ~— 2where Iz i — 

~ 
) • (30)

sin

For t~L >> 1; i.e., a large separation of the sinusoids compared to

the filter resolution,

A L 
~
2

A_ _ —4— a~~. (31)

On the other hand , when ~L << 1

a~a~ 1 — Iz I 2 -

— 2 2 
— (32 )  

• H
0

1
+ 0

2 
2

18



and , if a
~ 

= A reduces to

• 3 2
A 2 

L t ~ t~L < < 1

• a~~= a ~ . (33)

w 1+w2Note that (33) could have been obtained from (19) by translating 2 to

zero and substituting r 2 for the single frequency w.

For two equal amplitude sinusoids close in frequency , expressions (32)

and (33) are valid . In that case , even in the signal subspace , there may

be a large disparity in the eigenvalues of R — 41 + a~~I:

• A 1 — a 2(1+qL)

3 2
X
2 

— 0~ (l — q) ) (34)

where

02

q —  (35)
2a~

is the signal—to-noise ratio. However, A~ or A2 
will influence the learning

curves only if the corresponding scalar product, E1 W* or E2
.W* is relatively

large (equations ( 10) and (11)).

The projections of the eigenvectors on W~ are computed , up to a constant

factor , in Appendix A with the result

19
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- (2 + 
gL3

~
2 

) 2

J E
2 .W*1 2 

- q2t~
2L4 • (36)

For large q or re latively large L (note that LL~ <~~ 1 and L4t~
2 >> 1 can be

satisfied simultaneously) , the second mode will have a significant effect

on the weight learning curve . Its time constant

1
t

2 3~2a2 ( 1 + q  L

— 
( L + ~~L)

L3L~
2

( 1 + q  48

+ 

- T i .

is in general much longer than T 1.

To study the output learning curve , we examine the relative magnitudes of

2 3 2
A 11E ’.W* I - a~ (1 1~ qL)(2  +

A2 J E 2 . W*J _ ci~ ( 1 + q L3
~

2 

~ q 2
~

2L4

3 2
— a~qL( 1 + q L~~ ~ qL3

~
2 

. (38)

I 

_
_ _---

~
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F rom (38) it is seen that the second mode is relevant only when

qt\2L3 > 1. 11 this condition , somewhat stronger than (36), holds, the

second mode will slow the convergence of the output as well as that of

the weights. These results have been confirmed experimentally [11].

21 
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IV. THEORY — GENERAL SPECTRA

For the infinite case (L = ~), determining the eigenvalues and eigen—

vectors of the autocorrelation matrix reduces to finding its spectrum. In

addition , if the t ransfer function of the optimal f i l ter  is known , it is not

difficult to describe or approximate the learning curves. In this section,

these properties are derived , and it is shown that for large L the convergence

characteristics of the LMS adaptive filter are approximated by those for

L = ~~. A more detailed treatment of the mathematics may be found in

reference [5].

Let the input process x(2.) be stationary, and the z—transform (6]

of its au tocorr elation f unction given by

0(z) — ~ E{x(2.)x(k))zk &

where E denotes expectation . Assume that 0(z) is continuous and has no zeroes

or poles on the unit circle. (Note that the sinusoids of the previous section

are a singular case.) Then the power spectrum of x may be written

S(w) — G(e~~ ) (40) 
-

22
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and its correlation matrix admits the representation

= 41(2.—k)

—

= —~ E-- I S(~ )e 
9..
~
k)Wd . ~4 1)

Assume further, that the vector P possesses the same properties

P 9. = —;j :~:-- 
—

~~ 
S d

(CL))e d w

= —
~~~~

— I E~xd)e~~~dw 2. = 0 , . . ., . (42 )

For the ALE , if x is a signal process plus white noise ,

P 9. = —
~~~~

-- I S (w)e ~e~~
9.d~ . 

(43)

The f i n i t e  LxL matr ix  of equation (2) may be written

R 9.k 41 (2.—k) 9., k — 0 , . . ., L— 1 . (44)

We introduce the inf in i te  dimensional vector norm

11 y 1 1 2 
9.-0 

(45)

23
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All L—dimensional vectors may be considered as embedded in this space by

setting those components with indices greater than L equal to zero.

It is shown in Appendix B that W*, the solution of (5) considered as

a function of L, converges to a bounded solution f of the infinite Wiener—

Hopf equation as L + ~~; i.e.,

~~ 
41(9.-k)f~ = p9. = o , . . ., (46)

where l i m l I W * _ f 1 1 0 .
L-+ o

We mention here that the matrices R and 41 are Toeplitz [5] and , as such ,

possess the following properties (cf equations (B—4) and (B—9)): Let m and

M be the minimum and maximum of Is(w) I (non—zero and finite by the assumptions

on G(z)  ) ;  and let A~ , V = 1, . . ., L be the eigenvalues of R. Then

m < A
~~

< M  (47)

where lim A — m lim A = M . - (48)
L-’~ 

nun L-u oO max

In [5] it is also shown that the matrix R is approximated (in a Hilbert—

Schmidt norm) by the matrix R ,

R9.k = E g(  2vV 1 e 2lTiv (9.-k) (49)
y—l

which has eigenvalues S( 2n v 
~ and normalized eigenvectors e2’

~~~~~~/ VT .

24

—~~~ --- - — -— -
~
—--— - V • • V V

~~
_ —- V ~~~~ - --—V — - V 

~~~~~~~~~ . ~~• - - - • - - . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ - .



Thus, if E V are the eigenvectors of R, we have “approximately”

A — S( 2~n 
(50)

(E’5 - —i-- e 2lT iv2. 
9. = 0 , . . ., L-1 . (5 1)£

It is, therefore , not surprising that the following expressions (derived

in Appendix B) hold for the learning curves (10) and (11) . Let

F(w) = E f 9. e~~~
9., (52)

9— 0

then

lim I IW* — ~ (k ) f j 2 
— -

~~~~~
—

~~~~ (1—2~.tS (w) )
2k

IF(w)1
2d (53)

and

u r n  ~,(k) .F * — ~~ f(1—2iiS (~ ) ) 2ks( ) I F (w ) 1
2dw . (54)

Note that , heuristically, front equations (50) and (51),
L— 1 2uriv2.

E’~.fI
2 

— —i-— E f 9. e L 1
2 

— —
~~~

— I~ 
2irv ) , 2 , and that (10) and

(11) correspond to approximating sums of the integrals in (53) and (54).

The factor —i-. correspo nds to . Thus , a large value of F (w) will not

be significant unless it has some bandwidth. It is the integrated power

over a given spectral region that is relevant.
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In sumeary, for large L,

the eigenvectors are indexed by w,

the ~th eigenvalue corresponds to S (w) ,

and IW * E~ I
2 corresponds to IF( u ) 1

2 
~~

The learning curves for the weight vector and output correspond to a sum of

modes given by

(F (w) 2 ( l_ 2u S(w) ) 2k tt~~

and JF(w) 1
2S (w) ( l_ 2u S(W) ) 2k b~j~I (55)

respectively , where the spectrum has been divided into regions of width

Aüj . The time constant of mode ~ is thus

t(w) — {4~iS(w) } ’ . (56)

Finally, It follows from (47) that the conditioning number approaches

x max S(w)
max 

_________ 57mm S(~ ) 
V

and the eigenvalues of R satisfy

mm S(w) < A
~ < max S(c~) . (58)

(A) (A)
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V. SINGLE-POLE COMPLEX INPUT (ALE)

Using the previous theory, we shall now aqalyze in detail the learning

curves of the ALE of Figure lb for a one—pole complex input signal embedded

in white noise. More precisely, assume the input autocorrelation function

V to be of the form

41(2.) — ~~
2 e

a
~~~ e~~ 09. +• j~(9.) (59)

The z-transform of the signal alone is given by )

- 

G ( z) — ~~
2 1_ 1a 1 2 

— (60)
(z-a)(z —a)

• where a — ~~~~~~ . (60)

The transform of 41 has the form

G(z) — G5(z) + a~
2

_— l
— ~ 

2 ~~—b )(~—b • ) (61)0 (z-a) (z—r ’)

where b is yet to be determined.

I ’
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It may be easily shown (cf [8)) by substituting (66) in (61) that

—8
b e  e (6 2)

s c o s h 8 — c o sh ci• where —i-- - 

sinh 
(63)

00

Let the signal—to—noise rat io be given by

(6 4 )

For a << 1 (relatively narrowband ) and qa << 1, we have the approximation

8 -  ~/~
2 + 2ciq . (65)

Let us f i r s t  compute the conditioning number via expression (57) .

From (60) , on the unit circle

-2ct
S ( w) — 0 — —2 a 

1 —  2 
. (66)

e - 2e cos(w—w0
) + I

Also , since

S(w) — a~ + S (w) , (67)

it is clear that  the maximum of S occurs at w — and the minimu~ at

W W
0

± 1T .

V 
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Thus ,

A ~2 1 + e ~~ + 0 2
max ~ I _ e a 0

- 

~ :‘ 
+ a~~~. (68)

For a na~ rowband (compared to Nyquist) signal a << 1 and

A 1 +  2g

A - 

~q cz << 1 . (69)
mm 1 +  

2

• 
V If qa is also small ,

_ _ _ _  = 1 +  ~~~ qa << 1
mm

2
— 

8 (70 )
a’

It i. easily shown by classical techniques ( ( 9 ) ,  [10)) tha t the transfer

function of the optimal filter is given by

iwó
— 

cc
I — b e

i(A) 6 -

t - 
— 

1 — e~~~e
i
~~

’W0) 
(71)
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where c is a constant. Hence

2
J F( w ) J 2 

— 
— 8 —2 8 - (72)

1 — 2e cos(~ -w0) + e

Also , from (61) and (62)

— 
2 ~~~ ( z—b) (z ~~ —~ )(z) 

~O —~ 1 — 1 —a (z—a)(z —a)

8 1 — 2e~~ cos (w—w ) + e 28
—> S( w) — ~

2 e 
—a 

0 
—2ae 1 — 2e cos(w—w

0
) + e

2 cosh8 — cos(w— 0) (73)0 cosha — cos(w—w
0)

For small 8, the function (72) is very sharp and only the region

[w0—8, 
w0+8] will influence the integrals (53) and (54). As 8 increases

the spectrum of F flattens out until we must include the entire interval

[—ir , i i ) .  Let B ’ — 8—a . To approximate the learning curves , we divide

the interval i~ 2~~ into three regions: (w0 
— a , + a) ,  (w0 — 28 —ci ,

— a), and (w
0 + a , + 28 +a). They are centered at w0, w0—8, and

and have widths (&A))
1 

— 2c*, 
~~~~ 

— (~~~~) 3 
— 28’ respectively. This

is shown diagrammatically in Figure 2.

8
2 

(A)
2 

V

For small B and w, cosh B - 1 + 2 and cos~ - — 

2 
and (73)

may be approximated by
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f- u- 2(j3—a) ~~~~~
V J U  

2(~3-a)

1~ 1
~o-p W0+p

Figure 2. Diagram of a spectrum partition.

2 2
2 8 + ( ~ -w0

)
S( a ) — 

~0 2 2 8 << 1 . (74)
a +

Likewise, IF(w)1
2 is approximately

I F(w) 1
2 

-. c2e8 
2 

1 
2 8 << 1 - (75)

B + (w—e~~ )

The time constants for two of the regions V are the same so that

S(w 0) o~ 

2 8 

S(w~~8) — 

a 2 + 8 2

(L~w) 1) F(w ) J 2 
— ~~~~~~ 

C e 
2 (&A) )

2
I F ( ~~~ +8) 1

2 

~~~~~~~~~~~~~ 

c c
B 28

To simplif y the expressions , we will assume that a << 8 (this is the

case except at extremely low signal—to—noise ratios) . The substitution of

(76) into (53) and (54) then yields a sum of terms of the form (55). They 
V

are, up to the factor 2c2e 8,

filter: (1 — 2~ia ~~~~~~ + —k-- (1 — 4I.La~ )
~~ 

(77)
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2 2
2 2 2k 2G~ 2 2k

output: (1 — 2110o ~~~~~~~ ) + 8 (1 — 4I1c7,~ 
) . (78)

In the above approximation, the filter exhibits two time constants:

21 a
2 24~o0 8

and T
2 f -  (79)

4~10o

In contrast, since the slower second term in (78) is negligible (for

a << B), the convergence of the output will depend essentially on only one •

2
time constant , — ~~~ 

4~
— . Note that a closer approximation (more

4pa0 B - V

modes ) to equation (54), yields a second time constant at ~~~ ± 
~~

1
2 

= 4~ 
(S(w0 ± 

a))~~ — 
1
2 ( 

2a2 ) .  Thus, one would expect the
4jic0 B

‘ V

logarithmic slope of the actual learning curve for the output to vary

Fetween and 2T
~ 
during the period of significant convergence.

The above results offer the following interpretation. Initially, the

transfer function of the filter will be narrowly centered about (the

modes w for w close to convergence rapidly). With time the filter

widens (the slower m odes converge). On the other hand, the output converges 
V

4 
quickly, since for a narrowband signal, there is little error reduction as
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the f i l ter  widens . This is particularly true at high SNR (8 >>cs ) ; the

filter can afford to get quite wide since there is very little noise to

let through. At low SNR the optimal filter is narrow (B-a) , and this

“fil ter  growth” will not usually be observed .

The same considerations hold for large B (8>- i) although the approx-

imation (74) is not valid and must be replaced by (73) . For 8 > 1,

j F 2 (w)~ is approximately constant (equation 72)), all modes are equally

Important , and convergence will be limited by the larger time constants.

V 

On the other hand, the modes of the output learning curve fall off as

S(w)(cf  equation (55)),  and only those corresponding. to Iw— w 01 .5.2 will

be significant. 
-

A computer simulation of the ALE was run using pseudo-random noise

input with a correlation matrix given by equation (59) and parameters,

L— 64, w~ — 1.5, a— .2, p— .0008, and 8— .915. The results were then
2

ensemble—averaged to obtain W. It follows from (63) tha t SNR — —
~~ — 3.3 dE.

00
A plot of equation (56), time constant versus frequency, appears in Fig—

ure 3. It is seen tha t the fastest mode is about t 3 0  and the slowest,

r 525. Th. conditioning number is thus 17.5.
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600 -

500 -

400 -

I.

300 -

200 -

100 -

(I I I I
1!.

4 2 4

Figure 3. Plot of time constants of the various modes V )

of convergence for the weight vector (equatIon (56)): -
a= 0.2,8= 0.9l 5,~.L = 0.008, o~ = 0.5. V -

The actual learning curves for  the simulation appear in Figures 4

and 5. They are compared with those computed from equations (53) and (54) .

(It was found that fiv e modes provided a reasonable approximation to the

integrals, and that anything over ten modes was virtually indistinguishable

from the plotted curves.) The output curves in Figure 5 are in excellent

agreement. There is a very slight discrepancy in the weight vector learn-

ing curves of Figure 4, which may be attributed to the initial stages of

convergence. The independence assumption on which equation (1) is based 
V

is not valid for small k. The ultimate effect is the same as if the initial 
•

state of the ALE, w(0), were not quite 0. In contrast, Figure 5 was con—

structed by matching conditions at k — 50.
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V — - - V . -- ~~~
.

0.225 02 25 V

0.200 0 200

0. 175 0.175
I
I

0. 150 0.150

I
I I

~ 0.125 - ~~ 0.125

x
o~l= 

0. 100 - 0.100

0.075 0.075

0.050 . 0 050

0.025- 

~~~~~~~~ ______________________________

0.0 250.0 500.0 750.0 1000.0 0.0 250.0 600.0 750.0 1000.0
k

Figure 4. Learning curve s for the weight Figure 5. Learning curves for the output.
vector. Solid Line = computer simula- Solid Line = theoretical computed from
tion of ALE , averaged over a 20-point equation (54). Dots = computer simulationensemble. Dotted Line = theoretical
curve computed from equation (53). f of ALE , averaged over a 20-point ensemble.

Since 8— .915 is rather large, one would expect the overall con-

vergence of the weight vector to depend on the slowest mode. From Fig—

ure 3, this is about 500, which corresponds quite well with the simulation

in Figure 4. According to theory , the output should converge faster , de-

pending mostly on those modes for which Iw—w 0L<a . .2. From Figure 3,

this value is t - 55 which agrees with the e4 downpoint of Figure 5.
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Note that the scales of Figures 4 and 5 were chosen to give the same

magnitude for k— 0, and the more rapid convergence of the output curve

is readily apparent.

Figure 6 plots the spectrum at five different times; k 25, 50, 100,

250, and 500; plus the spectrum of the optimal filter W*. As expected , the

filter grows and widens with time. A more dramatic example is pictured in

Figure 7. In this case, the simulation was run with a real input signal

2 —~~ 9~ 2
i~ (2 )  — o e cosw0~ + 0

0 ~~(L) at a signal—to—noise ratio of

~
2 / 2 0 2 

— 15 dB.
B 0

0.50 -

:::

~~ ‘ 2wf

Figure 6. Power spectrum of W(k) for five dif-
ferent times (k = 25, 50, ZOO, 250, and 500),

V 
and the optimal weight vector W*(k oo) . The
input correlation function of the ALE was given
by equation (59) w ith a = 0 .2 ,(3 0.915, L 6 4 ,

1.5 , and p — 0.0008. The results were
averaged over a 100-point ensemble .
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0.24 -

0.20 -

3.14000.00 J I I I I I I
0 628

= 2irf

Figure 7. Power spectrum of W(k) at three dif-
ferent times (k=160 , 320, and 640). The input
correlation function was a~ e a I Q I t cos w0Q +

O~~wi th a= 0 . 2 ,P = 2 .O1 , L = 64 , w0 = 1.5 ,
and p = 00016. The results were averaged
over a 200-point ensemble .

- Finally , it should be recalled that the theory of the previous sec— V

tion is an approximation for  large L (L — 64 in the above simulation) . For

the case of a signal pole spectrum , we can explicitly derive the asymptotic

dependence of the eigenvalues on L. From [5], the eigenvalues of R8

(matrix (59) with 0) satisfy

_ _  
(80)
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Let = cos -~~, x
2 = cos(t ~~ + ~~~~ and r = e 0

. Then the error in

estimat ing is bounded by

1 — r 2 1 — r 2 2 2r (x 1—x 2 )

1 + r2 
- 2rx

1 

- 

1 + r2 
— 2rx

2 

(1r ) 
~~ 1+r

2_2rx
1
)( 1+r2_2rx2)

— L (x
1—x2

)S (x
1)S (x

2
); Ct < 1

But S ( x 1) = A — S ( x 2 ) ; 1x 1-x 2 1 - 
~~~ 

cos O~~. Thus

error < ~~~~~~~~~~~ x 2 
- (81)

~jx v

Except for very large eigenvalues, the percentage error will be small when

L c~ >> 1; 1.e., provided the signal is wider than the ALE resolution. For

the other extreme, L 0. << 1, the narrowband signal will appear essentially

sinusoid . -
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VI . CONCLUSION

We have examined the convergence of LMS adaptive filters as reflected

by the wei ght vector and f i l ter  output . These curves are a sum of modes

with decay constants equal to the eigenvalues of the input correlation

matrix. It was shown that, for zero initial conditions, the importance of

a particular mode depends on the projection of its eigenvector onto the optima l

f i l ter  W~ . For example , in the case of the adaptive line enhancer with an

input of M sinusoids in white noise , only the M—dimensional “signal subspace”

is relevant to convergence time.

One and two sinusoids were treated in detail. It was shown that a

single real sinusoid (two complex) has two pertinent eigenvalues (M equals

2), and that they are approximately equal. Consequently, convergence is often

much quicker than would be expected from an examination of all the eigenvalues.

The behavior for two sinusoids (four complex) depends on the separation of

their frequencies. If they are relatively close, there can be a large

disparity in the eigenvalues even in the signal subspace (equation (37)).

The associated eigenvectors were examined , and it was found that there exist

circumstances under which the slower mode may dominate the learning curve .
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A simple correspondence may be set up, for large f i l ter  lengths ,

between the discrete and continuous cases . Indexed by frequency, the

eigenvalues of the correlation matrix correspond to the magnitude of the

power spectrum , and the projections of their eigenvectors on W* correspond

to the magnitude of the filter transfer function. Obvious though this relation-

ship may be, it provides a powerful means of approximating the LMS learning

cUrves. A rough knowledge of the input spectrum suffices to evaluate the

conditioning number and thus set bounds on convergence (equation 57) ) .  A
—V.

small amount of additional analysis yields approximations to the learning

curves (equations (53) and (54) ).

As an example , we treated the case of a single pole input spectrum .

Simple expressions relating bandwidth , SNR , and approximate convergence

t imes were derived (equation (79) ) . In general , the convergence of the

output is faster than that of the weight vector. This is particularly

noticeable at high signal—to—noise ratios. It was alsø observed that the f i l t e r

is initially narrow and widens with time (during convergence). The more

exact expressions for the learning curves, equations (53) and (54) were then

evaluated numerically and proved in excellent agreement with a computer

simulation.

The techniques which we have developed often alleviate the need for

finding the eigenvalues of large matrices in order to analyze the learning

curves . In addition , they provide a physical context , the signal spectrum ,

in which to evaluate convergence. Thus , it is possible , with varying degrees

of accuracy dependent on knowledge of the input spectrum, to predict the

convergence behavior of the system in question.
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APPENDIX A

We are concerned with the eigenvectors of the submatrix

~~~~~~~~~~ 
(i. z) (A— i)

which has eigenvalues

(A—2)

where

iAL V V -

Z — 
i — e  

- 
(A—3)

2Up to order A ,

Z - L +- iL2A — L3A2 
(A—4)

x_ _ o .
(1\

Let ~b) be eigenvectors of B, then

V 

~ 
(c) - 

~
± (

~
±)

.43
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V - - 
~- r .

which implies

L + b Z — 2A , (A—5)

and, hence ,

b4- ~~ 
iAL 

(A— 6)

b_ = — 1+

2 2
We now calculate We . From equation (27) ,  with 

~2 ~ ~ and
1

- w2,  P in the current basis is proportional to (1). Also, R is given

by

- R — + — ~~ (~~~~
1 ~~ 

. 

(A—7) - -

~qZ 1+Lq)

where
- 2

0
1

q —  2~ -

Finally, We — R ’P is proportional to -

/1+14 —qZ 
\ 

(1 
\ — 

(1+Lq_qz

~—q~ 1+Lq) ~i1 ~~ 1+Lq—qI

- 

1 - ig~L
2 

+ 
L34~~ 

(A-8)

- 
~ + + 

L3~
2
~ 

-

. 44

—V.--.- V_ V-V V - ~~~~~~~~~ V__ ~_  —--V..- - VVVVVV ~ ~~~~~~~~~V. - -  --‘-~~~- ~ V V V ~~~ V -~~ - V



Define

E~ - (
~

) E - (
~

_) , (A-9)

so that I I E
+

H — l I E  H. Then , up to a constant fac tor

I E ~~ W*j
2 

- (2 + 
L3

~
2g ) 2 (A— la)

I E  W*1
2 

- q2A2L4

where t~L ‘< I -
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I

APPENDIX B

For mathematical background and material related to the subject

mat ter  in this appendix , the reader is referred to references [5] — [8].

We proceed to prove relation (46) .

Define the strong matrix norm by

HA ll — ~~~ 

~
j -
~
- . - . 

B—D

It follows from this definition [7] that the norm of a finite dimensional

Hermitian matrix B is given by

I IBI I — A - (B—2)

max

— maximum eigenvalue of B -

Let y be a vector in 2.2 , i.e., E y~ < °, then there exists ‘1(w) , the
9—0

inverse transform of y, such that 
-

- - -a-— 1~ Y(w)e~~~ dw . - 
(8—3)

The convolution theorem for Fourier series and Plancherel’s theorem imply

~~~~~*~~~.
-- - -Vu- .--~~~~~

4 
___________________ ________ 

,. 
-U. ~~~~~
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I I  E 
~2.k~k ’ 1

2 
- a

k-0

— L~7~ 
I Y ( ~j ) l 2 lS(w)I 2 dw - (B—4)

Thus

II~II — sup lI~y Il 1Hy lI
y

— max I S (w ) I . (B—5)

w

Let RL be the operator 4~ 
restricted to the L—dimensional subapace of

the first L basis vectors:

(RLy) 2. - 
L~1 

~ Lk ~~ 
2. < L-1 

-

k—0

0 2 . > L  - (8—6)

Thus, R
L is identical to R of equation (44). If we define the projection

operator QL by

(QL ) — y2. 2. < L—1

0 2 . > L  (B—7)

then

RL _ Q L~~~Q
L .
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Thus,

I I R L
H ~~I I Q L I l  I I ~~l ll Q L l I

= ! l ~ l l  . (B—8)

Similar expressions hold for the infinum of RL and 4 :

- mj n

Li L- win Q~ pi~~y~y l I ~II

> ~~~~~ 
I t4Q’~yJ...L

— 
y ~JQ

L
yfl

~~~~~~~~ 
I
~~

.ff....

— win I S (w) I ( from (B—4) ) (B-9)
w

It was assumed that G(Z) has no zeroes on the unit circle; thus, we may

write win tS(w)I — a > 0. Then
w

L-1 L- 11 I (R ) — max eigenvalue (R )

V ‘ 

— 
1

ALwin

— a (B—b )

49

- --V-—V.---— - 
__

~~~~~~~ _V rV. __ V~~~ _V_-._ _ - _ - _ 
- - . ___________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  * 4

— V V ‘V.— . .‘V~~ . —



Al so , it follows from (B—5) and (B—9) (cf [8] that exists and is bounded .

Finally, we note that converges weakly to ~ ; i . e . ,  that

Urn (((R
L_4~)y Il 0 (B—li)

L-~

This follows f r om

I I  (gL_4~)y~ = I IQ QL
~~ t~,I I

- 1Q
L
(4~Q

L~~) + (QL4~ 4~) I I

~ 1~~~(Q
L~~) 1 ~ + I I (Q

L_I)~~y J I

~ lI~Il 11 (Q
L
1)~~1 j + (1(Q

L~1)~~~1 1 (B-i2)

and the fact  that

- Il Q L~Iy I ( 2 - 
L-L

converges to zero as L -
~~ ~~~ -

Let be the solution of the L—dimensional Wiener-Hopf equation (5)

— (R L
)~~~Q

L
P (8— 13)

where P is definad by (42). Let f — ~~
‘P and — Q

Lp Then
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I f~W~ I = 
~~~P 

- (R L ) I~~L 1

II (
~ ‘ - (R~~~~

1) P j I + II (R L )
_ I

(P_P L )

Also ,

H — (R L)
_ l

) P j  1 = H (RL) (R L_~~)~~~~~~ p I

~ lk~~~ l I I I R
L
~~ )f I I .

Hence ,

l f—w’iI < — ‘—— (l~~(R’~~ )f II + Hp_pLH),

and (8— 12) implies

lim I l f_WL I — 0 - (B—14)
L-’~

_~~~~~~~ ...~ow—preve (53) and (54). Let

A —  I—2~i~

A — I_2PRL . (B—15)

Then the substitution of A and A for 4~ and plus an induction on the

inequality (B—12) implies that Ak converges weakly to Ak and thus

11w IIA
k
Y I I  — I I A

k
Y I I  - (8—16)
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Also ,

I ’  I AkWL II ~~ II A
kWL .~ A

k
f I I  + I I A k f - A

k
f I l  +

Hence ,

lim I I A kWL II 2 
= I jA

k
fj I

2 (B 17)
L-’~

But the convolution theorem implies

(A
k

) I ( l_ 2p S(w) ) ke~~~~~
m) dw (B-18)

and Plancherel’s theorem gives

I A
k

f 1 1
2 

= + ~ (i_2p5(w))
2k 

I F ( w ) 1
2dw (8-19)

— i f  V

with F(w) defined as in (52) .  Subs t i tu t ion  of (8) and (8-19) into (B— 17)

yields equation (53). A similar calculation using (8) and (11) gives

equation (54) .

_  
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